
SOFTWARE ENGINEERING

(Effective from the academic year 2018 -2019)

SEMESTER – III

Course Code 18CS35 CIE Marks 40

Number of Contact Hours/Week 3:0:0 SEE Marks 60

Total Number of Contact Hours 40 Exam Hours 03

CREDITS –3

Course Learning Objectives: This course (18CS35) will enable students to:

 Outline software engineering principles and activities involved in building large software

programs.Identify ethical and professional issues and explain why they are of concern to software

engineers.

 Explain the fundamentals of object oriented concepts

 Describe the process of requirements gathering, requirements classification, requirements

specification and requirements validation. Differentiate system models, use UML diagrams and

apply design patterns.

 Discuss the distinctions between validation testing and defect testing.

 Recognize the importance of software maintenance and describe the intricacies involved in

software evolution.Apply estimation techniques, schedule project activities and compute pricing.

 Identify software quality parameters and quantify software using measurements and metrics. List

software quality standards and outline the practices involved.

Module 1 Contact

Hours

Introduction: Software Crisis, Need for Software Engineering. Professional Software

Development, Software Engineering Ethics. Case Studies.

Software Processes: Models: Waterfall Model (Sec 2.1.1), Incremental Model (Sec 2.1.2)

and Spiral Model (Sec 2.1.3). Process activities.

Requirements Engineering: Requirements Engineering Processes (Chap 4). Requirements

Elicitation and Analysis (Sec 4.5). Functional and non-functional requirements (Sec 4.1). The

software Requirements Document (Sec 4.2). Requirements Specification (Sec 4.3).

Requirements validation (Sec 4.6). Requirements Management (Sec 4.7).

RBT: L1, L2, L3

08

Module 2

What is Object orientation? What is OO development? OO Themes; Evidence for usefulness

of OO development; OO modelling history. Modelling as Design technique: Modelling;

abstraction; The Three models. Introduction, Modelling Concepts and Class Modelling:

What is Object orientation? What is OO development? OO Themes; Evidence for usefulness

of OO development; OO modelling history. Modelling as Design technique: Modelling;

abstraction; The Three models. Class Modelling: Object and Class Concept; Link and

associations concepts; Generalization and Inheritance; A sample class model; Navigation of

class models;

Textbook 2: Ch 1,2,3.

RBT: L1, L2 L3

08

Module 3

System Models: Context models (Sec 5.1). Interaction models (Sec 5.2). Structural models

(Sec 5.3). Behavioral models (Sec 5.4). Model-driven engineering (Sec 5.5).

Design and Implementation: Introduction to RUP (Sec 2.4), Design Principles (Chap 7).

Object-oriented design using the UML (Sec 7.1). Design patterns (Sec 7.2). Implementation

issues (Sec 7.3). Open source development (Sec 7.4).

RBT: L1, L2, L3

08

Module 4

Software Testing: Development testing (Sec 8.1), Test-driven development (Sec 8.2),

Release testing (Sec 8.3), User testing (Sec 8.4). Test Automation (Page no 212).

Software Evolution: Evolution processes (Sec 9.1). Program evolution dynamics (Sec 9.2).

Software maintenance (Sec 9.3). Legacy system management (Sec 9.4).

RBT: L1, L2, L3

08

Module 5

Project Planning: Software pricing (Sec 23.1). Plan-driven development (Sec 23.2). Project

scheduling (Sec 23.3): Estimation techniques (Sec 23.5). Quality management: Software

quality (Sec 24.1). Reviews and inspections (Sec 24.3). Software measurement and metrics

(Sec 24.4). Software standards (Sec 24.2)

RBT: L1, L2, L3

08

Course Outcomes: The student will be able to :

 Design a software system, component, or process to meet desired needs within realistic

constraints.

 Assess professional and ethical responsibility

 Function on multi-disciplinary teams

 Use the techniques, skills, and modern engineering tools necessary for engineering practice

 Analyze, design, implement, verify, validate, implement, apply, and maintain software systems or

parts of software systems

Question Paper Pattern:

 The question paper will have ten questions.

 Each full Question consisting of 20 marks

 There will be 2 full questions (with a maximum of four sub questions) from each module.

 Each full question will have sub questions covering all the topics under a module.

 The students will have to answer 5 full questions, selecting one full question from each module.

Textbooks:

1. Ian Sommerville: Software Engineering, 9th Edition, Pearson Education, 2012. (Listed topics

only from Chapters 1,2,3,4, 5, 7, 8, 9, 23, and 24)

2. Michael Blaha, James Rumbaugh: Object Oriented Modelling and Design with UML,2
nd

 Edition,

Pearson Education,2005.

Reference Books:

1. Roger S. Pressman: Software Engineering-A Practitioners approach, 7th Edition, Tata McGraw

Hill.

2. Pankaj Jalote: An Integrated Approach to Software Engineering, Wiley India

DESIGN AND ANALYSIS OF ALGORITHMS

(Effective from the academic year 2018 -2019)

SEMESTER – IV

Course Code 18CS42 CIE Marks 40

Number of Contact Hours/Week 3:2:0 SEE Marks 60

Total Number of Contact Hours 50 Exam Hours 03

CREDITS –4

Course Learning Objectives: This course (18CS42) will enable students to:

 Explain various computational problem solving techniques.

 Apply appropriate method to solve a given problem.

 Describe various methods of algorithm analysis.

Module 1 Contact

Hours

Introduction: What is an Algorithm? (T2:1.1), Algorithm Specification (T2:1.2), Analysis

Framework (T1:2.1), Performance Analysis: Space complexity, Time complexity (T2:1.3).

Asymptotic Notations: Big-Oh notation (O), Omega notation (Ω), Theta notation (), and

Little-oh notation (o), Mathematical analysis of Non-Recursive and recursive Algorithms

with Examples (T1:2.2, 2.3, 2.4). Important Problem Types: Sorting, Searching, String

processing, Graph Problems, Combinatorial Problems. Fundamental Data Structures:

Stacks, Queues, Graphs, Trees, Sets and Dictionaries. (T1:1.3,1.4).

RBT: L1, L2, L3

10

Module 2

Divide and Conquer: General method, Binary search, Recurrence equation for divide and

conquer, Finding the maximum and minimum (T2:3.1, 3.3, 3.4), Merge sort, Quick sort

(T1:4.1, 4.2), Strassen‟s matrix multiplication (T2:3.8), Advantages and Disadvantages of

divide and conquer. Decrease and Conquer Approach: Topological Sort. (T1:5.3).

RBT: L1, L2, L3

10

Module 3

Greedy Method: General method, Coin Change Problem, Knapsack Problem, Job

sequencing with deadlines (T2:4.1, 4.3, 4.5). Minimum cost spanning trees: Prim‟s

Algorithm, Kruskal‟s Algorithm (T1:9.1, 9.2). Single source shortest paths: Dijkstra's

Algorithm (T1:9.3). Optimal Tree problem: Huffman Trees and Codes (T1:9.4).

Transform and Conquer Approach: Heaps and Heap Sort (T1:6.4).

RBT: L1, L2, L3

10

Module 4

Dynamic Programming: General method with Examples, Multistage Graphs (T2:5.1, 5.2).

Transitive Closure: Warshall‟s Algorithm, All Pairs Shortest Paths: Floyd's Algorithm,

Optimal Binary Search Trees, Knapsack problem ((T1:8.2, 8.3, 8.4), Bellman-Ford

Algorithm (T2:5.4), Travelling Sales Person problem (T2:5.9), Reliability design (T2:5.8).

RBT: L1, L2, L3

10

Module 5

Backtracking: General method (T2:7.1), N-Queens problem (T1:12.1), Sum of subsets

problem (T1:12.1), Graph coloring (T2:7.4), Hamiltonian cycles (T2:7.5). Programme and

Bound: Assignment Problem, Travelling Sales Person problem (T1:12.2), 0/1 Knapsack

problem (T2:8.2, T1:12.2): LC Programme and Bound solution (T2:8.2), FIFO Programme

and Bound solution (T2:8.2). NP-Complete and NP-Hard problems: Basic concepts, non-

10

deterministic algorithms, P, NP, NP-Complete, and NP-Hard classes (T2:11.1).

RBT: L1, L2, L3

Course Outcomes: The student will be able to :

 Describe computational solution to well known problems like searching, sorting etc.

 Estimate the computational complexity of different algorithms.

 Devise an algorithm using appropriate design strategies for problem solving.

Question Paper Pattern:

 The question paper will have ten questions.

 Each full Question consisting of 20 marks

 There will be 2 full questions (with a maximum of four sub questions) from each module.

 Each full question will have sub questions covering all the topics under a module.

 The students will have to answer 5 full questions, selecting one full question from each module.

Textbooks:

1. Introduction to the Design and Analysis of Algorithms, Anany Levitin:, 2rd Edition, 2009.

Pearson.

2. Computer Algorithms/C++, Ellis Horowitz, Satraj Sahni and Rajasekaran, 2nd Edition, 2014,

Universities Press

Reference Books:

1. Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronal L. Rivest, Clifford

Stein, 3rd Edition, PHI.

2. Design and Analysis of Algorithms , S. Sridhar, Oxford (Higher Education).

