

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

SESSION: 2021-2022 (EVEN SEMESTER) I SESSIONAL TEST QUESTION PAPER

SET-A

USN			

Degree Branch : B.E

: Electronics & Communication Engineering

Course Title

: Digital Communication

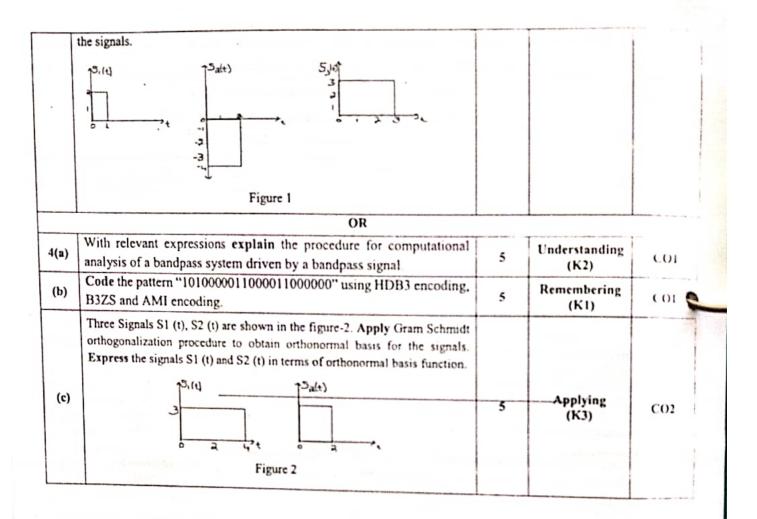
Duration

: 90 Minutes

Semester

16-05-2022

Date Course Code : 18EC61


: 30 Max Marks

Note: Answer ONE full question from each part

Q. No.	Question	Marks	K Level	CO mapping
110.	PART-A			
1(a)	Define Hilbert Transform and explain the method of obtaining it using fourier transform.	5	Understanding (K2)	COI
(b)	Determine Hilbert transform of signal $x(t) = sinc(t)$.	5	Applying (K3)	COI
(c)	Explain the geometric representation of set of M energy signals as linear combination of N orthonormal basis functions. Illustrate for the case of N=2 and M=3 with necessary diagrams and equations.	5	Understanding (K2)	CO2
	OR		=	
2(a)	Explain pre envelope and complex envelope of a signal s(t) with an example.	5	Understanding (K2)	COI
(b)	Determine pre envelope, complex envelope of signal $x(t) = e^{-it}$	5	Applying (K3)	COI
(c)	Explain the Gram Schmidt orthogonalization procedure.	5	Understanding (K2)	CO2
	PART-B			
3(a)	Explain canonical representation of band pass signal s(t). Also illustrate the scheme for deriving the in phase and quadrature components of the bandpass signal s(t).	5	Understanding (K2)	COI
(b)	A binary data sequence is 011010. Sketch the following line codes: a) NRZ unipolar b) RZ polar c) NRZ bipolar d) Manchester e) RZ	5	Remembering (K1)	COI
(c)	Three Signals S1(t), S2(t) and S3(t) are shown in the figure-1. Apply Gram Schmidt orthogonalization procedure to determine orthonormal basis for	5	Applying (K3)	CO2

5M

IQAC-Coordinator

Principal

Professor & Head Jept. of Electronics & Communication Engineering K. S. School of Engineering & Management Bangatoro. Sen 109

Principal / Director K.S. School of Engineering & Management Bangalore-560 062

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

SESSION: 2021-2022 (EVEN SEMESTER) II SESSIONAL TEST QUESTION PAPER

Set B

USN	USN						
-----	-----	--	--	--	--	--	--

Degree

: B.E

: 90 Minutes

Semester

VIA&B

Branch

: Electronics & Communication Engineering .Date

16-06-2022 18EC61

Duration

Course Title: Digital Communication

Course Code :

30 Max Marks

Note: Answer ONE full question from each part.

Q. No.	Question	Marks	K Level	CO mapping
	PART-A			
1(a)	Illustrate how continuous AWGN channel converted into vector channel.	5	Understanding (K2)	CO2
(ь)	With neat diagram and expressions, explain generation and coherent detection scheme of M ary QAM.	5	Understanding (K2)	CO3
(c)	Binary data is transmitted over AWGN channel using QPSK at a rate of 1Mbps and using carrier frequency of 100MHz. Determine the bandwidth required and symbol duration.	5	Applying (K3)	СОЗ
	OR			•••
2(a)	Illustrate maximum likelihood decision rule for signal detection problem.	5	Understanding (K2)	CO2
(b)	Using basis function define BFSK and Explain the signal space representation, generation and non-coherent detection of BFSK modulation.	5	Understanding (K2)	CO3
(c)	Draw the constellation diagram for M=4 ary QAM and Obtain an expression for probability of error of M ary QAM.	5	Applying (K3)	CO3
	PART-B			
3(a)	Obtain an expression for impulse response of matched filter.	5	Applying (K3)	CO2
(b)	Derive an expression for bandwidth efficiency. Comment on the bandwidth efficiency of M-ary PSK signals for different values of M.	5	Applying (K3)	CO3
(c)	Explain generation and detection of QPSK signal. For a given binary sequence 110101 draw the QPSK Waveform.	5	Understanding (K2)	CO3
	OR			
4(a)	Find the expression for mean and variance of correlator outputs $X_j=S_{ij}+N_j$. Also show that correlator outputs are statistically independent. Assume mean and variance of AWGN noise is zero and $N_0/2$.		Applying (K3)	CO2

(b)	Derive an expression for probability of error of Binary FSK system.	5	Applying (K3)	CO3
, (c)	Explain generation and detection of DPSK signal. For a binary sequence given by 10111010, illustrate differential encoded sequence, transmitted phase, and decoded sequence.		Understanding (K2)	СОЗ

Head of the Di

opt of Electronics & Communication Engineering K, S, School of Engineering & Management Bangalore-560 199

IQAC Coordinator

Principal

15.00mb

Find par Director K S School of Engineering and Managem Bengaluru - 560 109