

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109 DEPARTMENT OF CIVIL ENGINEERING SESSION: 2021-2022 (EVEN SEMESTER) I SESSIONAL TEST QUESTION PAPER SET-A

Dames		USN	
Degree Branch	B.E	Semester : IV	h
Course Title	Civil Engineering	Course Code : 18CV45	
Duration	Advanced Surveying	Date : 5/6/2022	
	90 Minutes	Max Marks : 30	

Q No.			ote: Answ Questio	Marks		CO mapping		
					RT-A			
l(a)	neight and t	he elevation	i of an ina	orizontal dist accessible obj at same level	ance, vertical ject by single	5	K3 Applying	COI
(b)	Find the RL of a church spire C from the following observations taken from the station A and B 50m apart. Angle between BAC = 60° Angle ABC = 50° . Angle of						K3 Applying	COI
(c)	Define an ac aerial photogr	erial photog raph.	graph and	types of an	5	K2 Understanding	CO2	
				0	R			
2(a)	Derive the e height and the plane method.	e elevation	or the hor of an inac	rizontal dista cessible obje	nce, vertical ct by double	5	K3 Applying	COI
(b)	observations a	Distance					K3 Applying	COI
	B A	3.525M 2.000M	16°30' 10°30'	325.000M	50M			
(c)	Explain the fo iii) Focal length	llowing: i) h iv) Princ	Exposure s ipal point	station ii) Fl v) Nadir po	ying height int	5	K2 Understanding	CO2
	Explain the			PAR	Г-В		8	
8(a)	Explain the me method.				0.000	5	K2 Understanding	C01
	Explain the me method.				22.0	5	K2 Understanding	COI
(c)	A line AB mea camera having	a focal len	m on a pl gth of 21	hotograph tal .5 cm. The	ken with a	5	K3 Applying	CO2

	measures 3 cm on a map drawn to scale of 1/45,000. Calculate the flying height of the aircraft, if the average altitude is 350 m.			
	OR			
4(a)	Explain the following terms: i. Centering ii. Double Plane Method iii. Face Left Observation iv. Telescope Normal v. Theodolite	5	K2 Understanding	COI
(b)	Explain the following terms: i. Trigonometric Levelling ii. Plunging iii. Swinging the Telescope iv. Single Plane Method. v. Telescope Invert.	5	K2 Understanding	C01
(c)	A section line AB appears to be 10.16 cm on a photograph for which the focal length is 16 cm. The corresponding line measures 2.54 cm on a map which is to a scale 1/50,000. The terrain has an average elevation of 200 m above mean sea level. Calculate the flying altitude of the aircraft above the mean sea level, when the photograph was taken.	5	K3 Applying	CO2

Course Incharge

WAKelle

HOD CIVIL

Dept. of Civil Engineering K.S. Group of Institutions K.S. School of Engineering Bangalace 201002.

IQAC- Coordinator

Principal Principal, Director K.S School of Engineering & Manager... Bangatore-560 062

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109 DEPARTMENT OF CIVIL ENGINEERING SESSION: 2021-2022 (EVEN SEMESTER) I SESSIONAL TEST QUESTION PAPER SET-B

			USN
Degree		B.E	Semester : IV
Branch		Civil Engineering	Course Code : 18CV45
Course Title	- 10	Advanced Surveying	Date : 5/6/2022
Duration	1	90 Minutes	Max Marks : 30

		Note: A	nswer ONE	full question fr	om each	pa rt.	60
Q No.		Que	estion		Marks	K- Level	CO mapping
				PART-A			
l(a)		lowing terms: ic Levelling ii. Single Plane Me			5	K1 Remembering	COI
(b)	Explain the m method.	neasurement of	horizontal ang	gle by repetition	5	K2 Understanding	COI
(c)	•	ollowing: i) Fo	· · · ·	Principal point	5	K2 Understanding	CO2
				OR	artea -		
2(a)	Define the following terms: i. Centering ii. Double Plane Method iii. Face Left Observation iv. Telescope Normal v. Theodolite				5	K1 Remembering	COI
(b)				le by reiteration	5	K2 Understanding	C01
(c)	Differentiate	between the aer	ial photograph	and map.	5	K2 Understanding	CO2
				PART-B			
3(a)	 a) Derive the expression for the horizontal distance, vertical height and the elevation of an inaccessible object by single plane method when A instrument station is higher than B instrument station. 					K3 Applying	C01
(b)		a. Station A &	amp; B and	y (Q) from the the top of the Remarks R.L of B.M 325.000 M Distance AB = 100 m	5	K3 Applying	CO1

(c)	Two points A and B having elevations of 650 m and 250 m respectively above datum appear on the vertical photograph having the focal length of 250 mm and flying altitude of 2700 m above datum. Their correct photographic co-ordinates are as follows:				КЗ	
(1)	Point	Photograph	c Co-ordinates	5	Applying	CO2
		x (cm)	y (cm)		11.7.8	
	a	+3.65	+2.54			
	ь	-2.25	0.00			
	Calculate the length	Calculate the length of the ground line AB.				
			OR			
4(a)	Derive the expression for the horizontal distance, vertical height and the elevation of an inaccessible object by double plane method.			5	K3 Applying	COI
(b)	Determine the elevation of a point A, on the top of a hill a flag of staff AB of 3m height, was erected and the observations from two stations M & N; , 50m apart, were made as given below: Horizontal angle between B & amp; N @ M = $65^{0}25^{\circ}$ Horizontal angle between B & amp; M @ N = $72^{\circ}30^{\circ}$ Angle of elevation of B from M = $12^{\circ}14'29''$ Angle of elevation of B from N = $12^{\circ}34'32''$ Staff reading on B.M, when the instrument at M = 1.785m Staff reading on B.M, when the instrument at N = 2.305m If the R.L of the B.M is 200.000m. What is the R.L of A?				K3 Applying	COI
(c)	A vertical photograph was taken at an altitude of 1200 m above mean sea level. Calculate the scale of the photograph for terrain lying at elevations of 80 m and 300 m if the focal length of the camera is 15 cm.				K3 Applying	CO2

Course Incharge

Helle

HOD CIVIL Professor & Head Dent. of Civil Expinations K.S. Comment Schultures K.S. Schurt attacking Hanegemann

IQAC- Coordinator

Wittelle

Principal

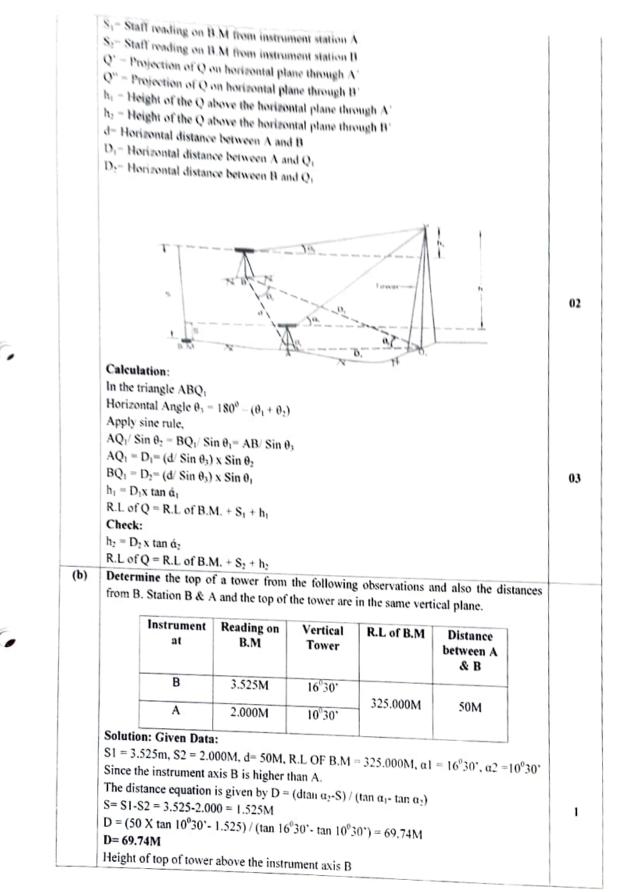
Principal / Director %.\$ School of Engineering & Managem Bangalore-560 052

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BENGALURU-560109 DEPARTMENT OF CIVIL ENGINEERING

SESSION: 2021-2022(EVEN SEMESTER)

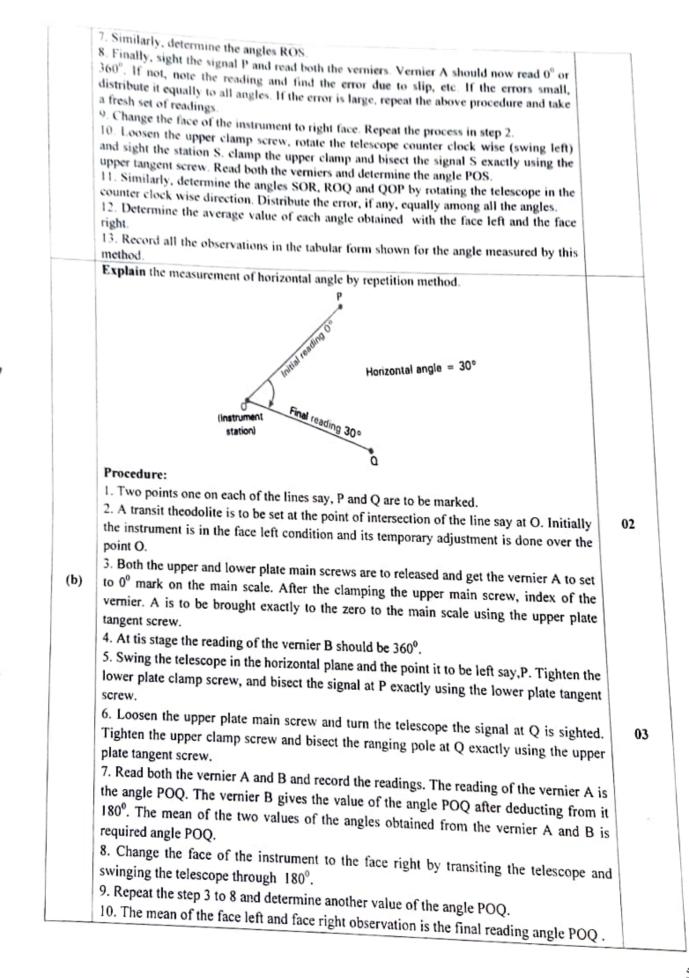
I SESSIONAL TEST SCHEME & SOLUTION

SET-A


Degree Branch Course Title Duration	:	B.E Civil Engineering Advanced Surveying 90 Minutes	Semester Date Course Code Max Marks	:	IV 5-6-2022 18CV45 30
--	---	--	--	---	--------------------------------

Note: Answer ONE full question from each part

Q. No.	Questions with Scheme & Solution	Marks
,	PART-A	
	Derive the expression for the horizontal distance, vertical height and the elevation of an inaccessible object by single plane method when instrument are at same level	02
l(a)	let 'h' be the height of Q above the horizontal line of sight A'Q' $\dot{a}_1 = \text{Angle of elevation at A}$ $\dot{a}_2 = \text{Angle of elevation at B}$ $S_1 = \text{Staff reading on B.M.}$ d = Horizontal distance between A and B D = Horizontal distance between A and Q From the triangle A'Q'Q, $h = Dx \tan \dot{a}_1(1)$ from the triangle B'Q'Q, $h = (d+D) \tan \dot{a}_2(2)$ equating (1) and (2) $Dx \tan \dot{a}_1 = (d+D) \tan \dot{a}_2$ $D = (dxtan \dot{a}_1)/(tan \dot{a}_1 - tan \dot{a}_2)$ Substituting the value of D in the equation 1 $h = (d x \tan \dot{a}_1 x \tan \dot{a}_2)/(tan \dot{a}_1 - tan \dot{a}_2)$ Therefore R.L of Q = R.L of B.M + S ₁ + h	03
(b)	Find the R.L. of a church spire C from the following observations taken from two stations A & B, 50m apart. Angle BAC = 60° , Angle ABC = 50° . Angle of elevation from A to the top of the spire = 30° Angle of elevation from B to the top of the spire = 29° Staff reading from A on B.M. of R.L of 20.000m = 2.500m and the staff reading from B	


0	n B.M = 0.500m.				
S	Solution: Given Data: $a_1 = 30^{\circ}, a_2 = 29^{\circ}, R.L \text{ OF B.M} = 20.000 \text{ M}$				
0	Solution: Given Data: $a_1 = 60^\circ, a_2 = 50^\circ, S_1 = 2.500M, S_2 = 0.500M, a_1 = 30^\circ, a_2 = 29^\circ, R.L. OF B.M = 20.000M$	02			
	A r				
	Tower-				
	TT OF THE				
	× · · · · · · · · · · · · · · · · · · ·				
	From triangle ABC, horizontal angle ACB = $\theta_3 = 180^{\circ} - (\theta_1 + \theta_2) = 180^{\circ} - (60^{\circ} + 50^{\circ}) = 70^{\circ}$				
	Applying sine rule				
	Applying sine rule AC/ $\sin \theta_2 = AB/\sin \theta_3 = BC/\sin \theta_1$				
	$D_1/\sin \theta_2 = d/\sin \theta_3 = D_2/\sin \theta_1$ The horizontal distance between the instrument station A and the church spire C;				
		03			
	$D_1 / \sin \theta_2 = d / \sin \theta_3$				
	$D_1 = (d/\sin \theta_3) x \sin \theta_2 = (50/\sin 70^\circ) x (\sin 50^\circ) = 40.76M$				
	The horizontal distance between the instrument station B and the church spire C;				
	$d/\sin\theta_3 = D_2/\sin\theta_1 =$				
	$D_2 = (d/\sin \theta_3) x \sin \theta_1 = (50/\sin 70^0) x (\sin 60^0) = 46.08M$				
	The height of the church spire above the instrument axis A				
	$h_1 = D_1 x \tan \alpha_1 = 40.76 x \tan 30^\circ = 23.53 M$				
	R.L to the top of the church spire above the instrument axis A				
	= R.L OF B.M + S_1 + H_1 = 20.000+2.500+23.53 =46.03M				
	The height of the church spire above the instrument axis B				
	$h_2 = D_2 x \tan \alpha_2 = 46.08 x \tan 29^0 = 25.54M$				
	R.L to the top of the church spire above the instrument axis A				
	= R.L OF B.M + S_1 + H_1 = 20.000+0.500+25.54 =46.04M				
	Define an aerial photograph and explain the types of an aerial photograph.				
	Aerial photograph is obtained as a result of photography of ground from air with a	2			
	camera mounted on an aircraft. The image of the ground photographed is formed on the				
	focal plane of the camera's objective where a sensitive film is placed.				
	Types:				
	1.Vertical Photograph: A vertical photograph is an aerial photograph made with the				
(c)	camera axis coinciding with the direction of gravity.				
(0)	2.Oblique Photograph: An oblique photograph is an aerial photograph taken with the				
	camera axis directed intentionally between the horizontal and the vertical. If the apparent				
	horizon is shown in the photograph it is said to be high oblique. If the apparent horizon is	3			
	not shown, it is said to be low oblique.				
	3. Tilted photograph: A tilted photograph is an aerial photograph made with the camera				
	axis unintentionally tilted from the vertical by a small amount, usually less than 3°.				
	OR				
	Derive the expression for the horizontal distance, vertical height and the elevation of an				
	inaccessible object by double plane method.				
2(a)	$\dot{\alpha}_1$ = Angle of elevation at A				
2(a)	$\dot{\alpha}_2$ = Angle of elevation at B				
	θ_1 = Horizontal angle between instrument station B and A to the object.				
	θ_2 = Horizontal angle between instrument station A and B to the object.				

۰,

	$h_1 = D x \tan \alpha_1 = 69.74 x \tan 16^{\circ} 30^{\circ} = 20.66M$	
	$h_1 = D x \tan \alpha_1 = 69.74 x \tan 16^{\circ} 30^{\circ} = 20.0014$ $h_1 = 20.66M$ R.L to the top of the tower = R.L of B.M + S ₁ + $h_1 = 325.000 + 3.525 + 20.66$	
	$h = 20.66M$ $h = 5.1 + 6BM + S_1 + h_1 = 325.000 + 5.14$	
	$R_1 = 20.00$ f the tower = R.L of D.M.	
	R.L. to the opposite	
	= 349.1051	2
	Check:	
	Check: Height of top of tower above the instrument axis A $h_2 = (D+d) x \tan \alpha_2 = (69.74+50) x \tan 10^0 30' = 22.19M$ $h_2 = (D+d) x \tan \alpha_2 = (69.74+50) x \tan 10^0 30' = 22.19M$	
	$h_1 = 22.19M$	
	$h_2 = (D+d) x \tan a_2 - (09.74709)$ $h_1 = 22.19M$ R.L to the top of the tower = R.L of B.M + S ₂ + $h_2 = 325.000 + 2.000 + 22.19$ $h_1 = 100M$	
	R.L to the top of the tower "top of the tower" (1999) = 349.190M = 349.190M	
	n i i i i hu the camera fors at	
	i) Exposure station: is a point in space, in the air, occupied of nodal point at the	
	i) Exposure station: is a point in space, in the air, occupied by the content point at the instant of exposure. Precisely, it is the space position of the front nodal point at the	5
	instant of exposure,	
	instant of exposure. ii) Flying height: is the elevation of the exposure station above sea level or any other ii) Flying height: of the elevation of the exposure station above sea level or any other	
(c)	alected datum	
	selected datum. iii) Focal length: It is the distance from the front nodal point of the lens to the plane of iii) the distance of the image plane from the rear nodal point.	
	iii) Focal length: It is the distance from the mage plane from the rear nodal point. the photograph. It is also the distance of the image plane from the rear nodal point	
	the state where a perpendicitial through a non-	
	in the transfer of the tool of a perpendicular to the things p	
	strikes the photograph. (Also, it is the foot of a perpendicular perpend	
	the indication of the x-axis and y-axis.	
	a) Nadir point is appoint where a plumb line dropped from the front flogar point	
	pierces the photograph. This point is also known as the photo nadir or photo plumb point.	
	PART-B	
	Explain the measurement of horizontal angle by reiteration method.	
	P S	
	Se Ca	
	State Bank State S	
	State State State	02
	1.15% Onlit 000 sight 360*	
	360* 360*	
	Ř Ř Fig. (2)	
3(a)	Fie. (d)	
	1. Set up the instrument over the station O and do al the temporary adjustments. Keep the	
	vertical circle to the left.	
	2. Set the vernier A to zero using the upper clamp and its tangent screw,	
	3. Loosen the lower clamp and direct the telescope to the signal at P clamp the lower	2
	 3.Loosen the lower clamp and direct the telescope to the signal at P. clamp the lower clamp and bisect P accurately using the lower tangent screw. Read both the verniers. 4. Loosen the upper clamp and turn the telescope clockwise until the signal at Q is a screw of the scr	03
	 Loosen the lower clamp and direct the telescope to the signal at P. clamp the lower clamp and bisect P accurately using the lower tangent screw. Read both the verniers. Loosen the upper clamp and turn the telescope clockwise until the signal at Q is bisected. Clamp the upper clamp and bisect Q exactly using the upper science. 	03
	 Loosen the lower clamp and direct the telescope to the signal at P. clamp the lower clamp and bisect P accurately using the lower tangent screw. Read both the verniers. Loosen the upper clamp and turn the telescope clockwise until the signal at Q is bisected. Clamp the upper clamp and bisect Q exactly using the upper tangent screw. Read both verniers. Mean of the vernier readings gives the basis of the vernier tangent. 	03
	 Loosen the lower clamp and direct the telescope to the signal at P. clamp the lower clamp and bisect P accurately using the lower tangent screw. Read both the verniers. Loosen the upper clamp and turn the telescope clockwise until the signal at Q is bisected. Clamp the upper clamp and bisect Q exactly using the upper tangent screw. Read both verniers. Mean of the vernier readings gives the horizontal angle POQ. Loosen the upper clamp and turn the telescope clockwise until the signal at Q is bisected. Clamp the upper clamp and bisect Q exactly using the upper tangent screw. 	03
	 3.Loosen the lower clamp and direct the telescope to the signal at P. clamp the lower clamp and bisect P accurately using the lower tangent screw. Read both the verniers. 4. Loosen the upper clamp and turn the telescope clockwise until the signal at Q is bisected. Clamp the upper clamp and bisect Q exactly using the upper tangent screw. 5. Read both verniers. Mean of the vernier readings gives the horizontal angle POQ. 6.Loosen the upper clamp again and turn the telescope clockwise until the signal at R is bisected. Use the upper tangent screw for exact bisection. 	03
	 Loosen the lower clamp and direct the telescope to the signal at P. clamp the lower clamp and bisect P accurately using the lower tangent screw. Read both the verniers. Loosen the upper clamp and turn the telescope clockwise until the signal at Q is bisected. Clamp the upper clamp and bisect Q exactly using the upper tangent screw. Read both verniers. Mean of the vernier readings gives the basis of the vernier tangent. 	03

VI

	A line AB measures 11 cm on a photograph taken with a camera having a focal length of 21.5 cm. The same line measures 3 cm on a map drawn to scale of 1/45,000. Calculate	
	A line AB measures 11 cm on a p 3 cm on a map drawn to som	
A 2 1	A line AB measures 1 ine measures 3 cm on a map diale is 350 m. 21.5 cm. The same line measures 3 the average altitude is 350 m. the flying height of the aircraft, if the average altitude is 350 m.	2
	the flying height of the aircraft, if the	
	Photo distance of the a	
. 1	Photo Scale Photo United B Map Scale Map distance of line AB	3
c)	$\frac{s}{1/45,000} = \frac{11}{3}$	
	$\frac{1}{45,000}$ 3 1 1 1 1	
	$S = \frac{11}{3} x \frac{1}{45,000} = \frac{1}{12.2723}$	
	Photo scale = $\frac{f}{H-h} = \frac{0.215}{H-350}$	
	$\therefore H = 2,638.69 + 350 = 2,988.69 m$	
	H = 2,638.69 + 350 = 2,7610 OR	
	Explain the following terms:	
	Explain the following terms: i. Centering: The process of the setting the theodolite exactly over the station mark is	
	known as Centering.	
	known as Centering. ii. Double Plane Method: If the chosen two instrument stations do not lie in the same plane double plane double plane double plane double plane	
	ii. Double Plane Method: If the chosen two instrument stations down as double plane vertical plane passing through the elevated object, then it is known as double plane	
	method.	
	iii Face Left Observation: If the face of the vertical circle is to the left of the	
4(a)	and a la la langua as tace left ODSCIVATIONS.	
	the observation of the angle is known as face left observation, when the vertical circle is to the iv. Telescope Normal: A telescope is said to be normal, when the vertical circle is to the	5 X 1 =
	a set of the help on the help of the set of	5
	The thread of the most accurate instrument used manny for mode and a	
	the basissental and vertical angles. It can also be used for locating points on a time	
	prolonging survey lines, finding the difference in elevations, setting out of grades,	
	ranging curves, etc.	
	Explain the following terms:	
	i. Trigonometric Levelling: It is defined as the process of determining the difference of	
	elevations of stations from observed vertical angles and known distances, which are	
	assumed to be either horizontal or geodetic lengths at mean sea level.	
	ii. Plunging: It is the process of turning the telescope in the vertical plane through 180	
	degree about trunnion axis. iii. Swinging the Telescope: It is the process of turning the telescope in the horizontal	
(b)	iii. Swinging the Telescope: It is the process of turning the telescope as right swing. If the plane. If the telescope is rotated in the clock wise direction, known as right swing. If the	5 X 1 =
	telescope is rotated in the anti clock wise direction, known as left swing.	5
	iv. Single Plane Method: It is defined as if the two instrument stations so chosen lie in	
	the same vertical plane passing through the elevated object.	
	v. Telescope Invert: A telescope is said to be normal, when the vertical circle is to the	
	face right and the "bubble down".	
	A section line AB appears to be 10.16 cm on a photograph for which the focal length is	
	16 cm. The corresponding line measures 2.54 cm on a map which is to a scale 1/50,000.	
	The terrain has an average elevation of 200 m above mean sea level. Calculate the flying	5
	altitude of the aircraft above the mean sea level, when the photograph was taken.	
		2
(0	Photo Scale_ Photo distance of line ab	
	Map Scale Map distance of line AB	
	Here, map scale = $1/50,000$; Let the photo scale be $1/n$	

n

$$\frac{\frac{1}{n}}{\frac{1}{50,000}} = \frac{10.16}{2.54}$$

$$\frac{1}{n} = \frac{10.16}{2.54} \times \frac{1}{12,500} = \frac{1}{12,500} \text{ or } n = 12,500$$
Again, $S_{200} = \frac{1}{n} = \frac{f}{n-h} \text{ or } \frac{1}{12,500} = \frac{(\frac{16}{100})}{(H-200)m}$

$$\therefore H = 2000 + 200 = 2,200 \text{ m}$$

Am Course Incharge

.

Wille

HOD CIVIL Professor & Head K.S. Sch- Tot Engineering & Management Bangalore-560 u62.

IQAC- Coordinator

1 e. Rara +

Ator Principal Dr. K. RAMA NARASIIviHA Principal/Director K S School of Engineering and Manager-Bengaluru - 560 109

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BENGALURU-560109

DEPARTMENT OF CIVIL ENGINEERING

SESSION: 2021-2022(EVEN SEMESTER)

I SESSIONAL TEST SCHEME & SOLUTION

SET-B

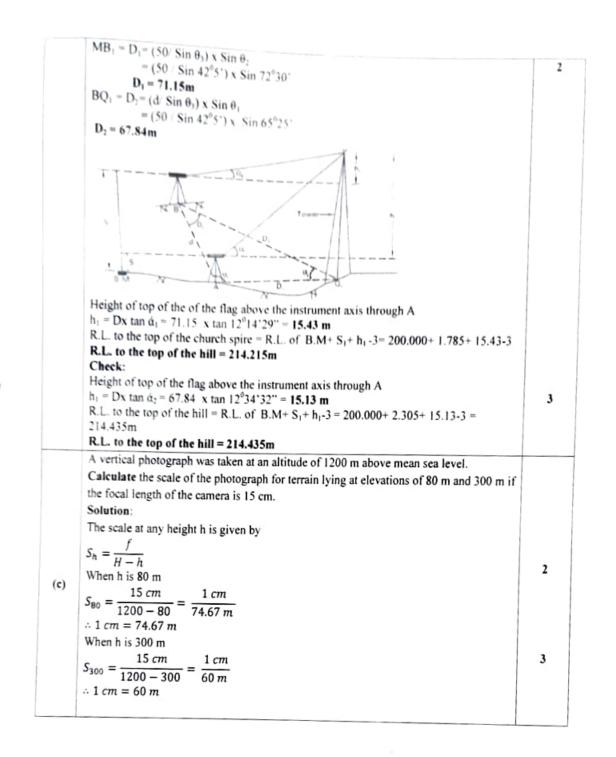
Degree	:	B.E.	Semester	:	IV
Branch	:	Civil Engineering	Date	:	5-6-2022
Course Title	:	Advanced Surveying	Course Code	:	18CV45
Duration	:	90 Minutes	Max Marks	:	30

Note: Answer ONE full question from each part

Q. No.	Questions with Scheme & Solution	Marks
	PART-A	
1(a)	 Define the following terms: i. Trigonometric Levelling: It is defined as the process of determining the difference of elevations of stations from observed vertical angles and known distances, which are assumed to be either horizontal or geodetic lengths at mean sea level. ii. Plunging: It is the process of turning the telescope in the vertical plane through 180 degree about trunnion axis. iii. Swinging the Telescope: It is the process of turning the telescope in the horizontal plane. If the telescope is rotated in the clock wise direction, known as right swing. If the telescope is rotated in the anti clock wise direction, known as left swing. iv. Single Plane Method: It is defined as if the two instrument stations so chosen lie in the same vertical plane passing through the elevated object. v. Telescope Invert: A telescope is said to be normal, when the vertical circle is to the face right and the "bubble down". 	5 x 1 =5
(b)	Explain the measurement of horizontal angle by repetition method.	02
	 Two points one on each of the lines say, P and Q are to be marked. A transit theodolite is to be set at the point of intersection of the line say at O. Initially the instrument is in the face left condition and its temporary adjustment is done over the point O. Both the upper and lower plate main screws are to released and get the vernier A to set to 0^o mark on the main scale. After the clamping the upper main screw, index of the vernier. A is to be brought exactly to the zero to the main scale using the upper plate 	03

(c) 2(a)	 ii) Principal point: is a point where a perpendicular dropped from the front nodal point. strikes the photograph. (Also, it is the foot of a perpendicular to the image plane from the rear nodal point in a camera lens system free from manufacturing errors). This principal point is coincided with the intersection of the x-axis and y-axis. iii) Tilt: is the vertical angle defined by the intersection, at the exposure station, of the optical axis with the plumb line. iv) Exposure station: is a point in space, in the air, occupied by the camera lens at the instant of exposure. Precisely, it is the space position of the front nodal point at the instant of exposure. v) Flying height: is the elevation of the exposure station above sea level or any other selected datum. 	5
	 ii. Double Plane Method: If the chosen two instrument stations do not lie in the same vertical plane passing through the elevated object, then it is known as double plane method. iii. Face Left Observation: If the face of the vertical circle is to the left of the observer, the observation of the angle is known as face left observations. iv. Telescope Normal: A telescope is said to be normal, when the vertical circle is to the face left and the "bubble up". v. Theodolite: The theodolite is the most accurate instrument used mainly for measuring the horizontal and vertical angles. It can also be used for locating points on a line, prolonging survey lines, finding the difference in elevations, setting out of grades, ranging curves, etc. Explain the measurement of horizontal angle by reiteration method. 	5 x 1 =5

	Se Toom the statist	p Sa p	
	R ister prot	Q H 300*	02
	the vertical circle to the left.	ion O and do al the temporary adjustments. Keep	
	 clamp and bisect P accurately using the clamp and bisect P accurately using the Loosen the upper clamp and turn the bisected. Clamp the upper clamp and turn the bisected. Clamp the upper clamp again and bisected. Use the upper clamp again and bisected. Use the upper tangent screw determine the angle QOR. The angle the readings to R and Q. 7. Similarly, determine the angles RC 8. Finally, sight the signal P and read 360°. If not, note the reading and find distribute it equally to all angles. If the take a fresh set of readings. 9. Change the face of the instrument to the station S. clamp the upper tangent screw, not sight the station S. clamp the upper tangent screw. 	upper clamp and its tangent screw, the telescope to the signal at P. clamp the lower the lower tangent screw. Read both the verniers, he telescope clockwise until the signal at Q is bisect Q exactly using the upper tangent screw. ernier readings gives the horizontal angle POQ. turn the telescope clockwise until the signal at R is v for exact bisection. Read both the verniers an QOR is obtained by finding the difference between OS. both the verniers. Vernier A should now read 0° or the error due to slip, etc. If the errors small, the error is large, repeat the above procedure and to right face. Repeat the process in step 2. thate the telescope counter clock wise (swing left) er clamp and bisect the signal S exactly using the	03
	12. Determine the average value of earlight.	OR, ROQ and QOP by rotating the telescope in the te the error, if any, equally among all the angles. ach angle obtained with the face left and the face tabular form shown for the angle measured by this	
	Мар	Aerial Photograph	
(c)	1.Map is an orthogonal Projection	1. Aerial photograph is a central projection i.c perspective projection	5
	2. Map has a single constant scale	2. Aerial photograph varies from point depending upon their elevations	
	3. The amount of detail on a map		


C

	4. Due to symbolic representation of the clarity of details is more on maps.4. No symbolic representation is there in the photo.		
	PART-B		-
	Derive the expression for the horizontal distance, vertical height and the elevation of an inaccessible object by single plane method when A instrument station is higher than B instrument station. when the instrument axis at A is higher than that at B		
	$\dot{\alpha}_1 = \text{Angle of elevation at A}$	02	
3(a)	$\dot{\alpha}_2$ = Angle of elevation at B S ₁ = Staff reading on B.M from instrument station A. S ₂ = Staff reading on B.M from instrument station B Q' = Projection of Q on horizontal plane through A' Q'' = Projection of Q on horizontal plane through B' h ₁ = Height of the Q above the horizontal plane through A' h ₂ = Height of the Q above the horizontal plane through B' d= Horizontal distance between A and B D= Horizontal distance between A and Q From the triangle A'Q'Q, h ₁ = Dx tan $\dot{\alpha}_1$ (1)		
	trom the triangle B'Q'Q, $h_2 = (d+D) \tan \dot{\alpha}_2(2)$ Subtracting equation (2) from (1) h_2 - $h_1 = Dx \tan \dot{\alpha}_1 - (d+D) \tan \dot{\alpha}_2$ $= D (\tan \dot{\alpha}_1 - \tan \dot{\alpha}_2) - Dx \tan \dot{\alpha}_2$ But h_2 - $h_1 =$ difference in levels of instrument axes	03	
	$= S_2 \cdot S_1 = S$ Therefore D (tan $\dot{\alpha}_1 \cdot \tan \dot{\alpha}_2$) - d x tan $\dot{\alpha}_2 = S$ Or D (tan $\dot{\alpha}_1 \cdot \tan \dot{\alpha}_2$) = S + d tan $\dot{\alpha}_2$ D =(dxtan $\dot{\alpha}_2 \cdot S$)/ (tan $\dot{\alpha}_1 \cdot \tan \dot{\alpha}_2$) Substituting the value of D in the equation 1 and 2 to find h_2 and h_1 $h_1 = Dx \tan \dot{\alpha}_1$ $h_2 = (d+D) \tan \dot{\alpha}_2$ Therefore R.L of Q = R.L of B.M + S ₁ + h ₁ R.L of Q = R.L of B.M + S ₂ + h ₂		

		Instrument	Reading on	ame vertical Vertical	Remarks	
		Station	B.M	Angle		
		A	2.870	28"42"	R.L of B.M -325.000	
		В	1.750	18" 06'	M	
					Distance AB =100 m	
	Solution					
	Given Da	ata:				
	S1 - 2.8	70m, S2 = 3.	750m, d= 100N	A. R.L. OF B	M = 325.000M, a1 = 28°42', a2	
	=18°06					
	Since the	instrument axi	is B is higher the	in A.		
			given by D = (o		$\tan \alpha_1 - \tan \alpha_2$)	
(b)		- 2.870-3.750	-	1997 - 1997 - 1997 1997 -		
			0.88) / (tan 28°4	2'- tan 18°06) = 252.13m	
	D= 252.1					
			bove the instrum	nent axis B		
			3 x tan 28°42' -			3
	h_= 138.					
	R.L to th	e top of the toy	ver = R.L of B.N	$1 + S_1 + h_1 = 1$	325.000 + 2.870 + 138.03	
	= 465.90					
	Check:					
	Height o	f top of tower a	above the instrum	nent axis A		
	Height o $h_2 = (D+$	f top of tower a d) x tan $a_3 = (2$	above the instrum 52,13+100) x tar	nent axis A $18^{0}06' = 11$	5.09m	:
	h ₂ = (D+	d) x tan $\alpha_2 = (2$	above the instrum 52.13+100) x tar	nent axis A 1 $18^{0}06' = 113$	5.09m	:
	$h_2 = (D + h_1 = 115.)$	d) x tan α ₂ =(2 09m	52.13+100) x tar	$18^{0}06' = 11$:
	$h_2 = (D + h_1 = 115.)$	d) x tan $\alpha_2 = (2$ 09m the top of the top	52.13+100) x tar	$18^{0}06' = 11$	5.09m 325.000 + 3.750+115.09	
	h ₂ = (D+ h ₁ = 115, R.L to th = 349.19 Two poi	d) x tan $\alpha_2 = (2 09m)$ the top of the top 00M Ints A and B ha	52.13+100) x tar wer = R.L of B.N ving elevations c	$h + 8^{0}06' = 112$ $h + S_{2} + h_{2} = 12$ of 650 m and 2	325.000 + 3.750+115.09 250 m respectively above datum	
	$h_2 = (D + h_1 = 115, R.L to th = 349.19$ Two point appear of the second seco	d) x tan $\alpha_2 = (2 \ 09m)$ the top of the top OM ints A and B has in the vertical p	52.13+100) x tar wer = R.L of B.N ving elevations of hotograph havin	$h = 18^{0}06^{\circ} = 112^{\circ}$ $h = 18^{0}06^{\circ} = 18^{\circ}$ $h = 18^{\circ}06^{\circ} $	325.000 + 3.750+115.09 250 m respectively above datum ngth of 250 mm and flying altitude	
	$h_2 = (D + h_1 = 115, R.L to th = 349.19$ Two point appear of the second seco	d) x tan $\alpha_2 = (2 \ 09m)$ the top of the top OM ints A and B has in the vertical p	52.13+100) x tar wer = R.L of B.N ving elevations of hotograph havin	$h = 18^{0}06^{\circ} = 112^{\circ}$ $h = 18^{0}06^{\circ} = 18^{\circ}$ $h = 18^{\circ}06^{\circ} $	325.000 + 3.750+115.09 250 m respectively above datum ngth of 250 mm and flying altitude	
	$h_2 = (D+h_1 = 115, R.L to th = 349.19$ Two point appear of of 2700	d) x tan $\alpha_2 = (2 \ 09m)$ the top of the top OM ints A and B has in the vertical p	52.13+100) x tar wer = R.L of B.N ving elevations of hotograph havin	$h = 18^{\circ}06^{\circ} = 112$ $h + S_2 + h_2 = 100$ of 650 m and 200 g the focal ler hotographic c	325.000 + 3.750+115.09 250 m respectively above datum	
	$h_2 = (D+h_1 = 115, R.L to th = 349.19$ Two point appear of of 2700	d) x tan $\alpha_2 = (2 \ 09m)$ the top of the top 00M ints A and B ha in the vertical p m above datum	52.13+100) x tar wer = R.L of B.N ving elevations c hotograph havin h. Their correct p Photographic x (cm)	$h = 18^{0}06' = 112$ $A + S_2 + h_2 = 100$ of 650 m and 22 g the focal ler hotographic c <u>Co-ordinates</u> y (cm)	325.000 + 3.750+115.09 250 m respectively above datum ngth of 250 mm and flying altitude	:
	$h_2 = (D+h_1 = 115, R.L to th = 349.19$ Two point appear of of 2700	d) x tan $\alpha_2 = (2$ 09m the top of the top 00M ints A and B ha in the vertical p m above datum Point a	52.13+100) x tar wer = R.L of B.N ving elevations c hotograph havin their correct p Photographic x (cm) +3.65	$h = 18^{0}06^{\circ} = 112$ $h = 10^{0}06^{\circ} = 10^{0}06^{\circ} = 10^{0}06^{\circ}$ $h = 10^{0}06^{\circ} = 10^{0}06^$	325.000 + 3.750+115.09 250 m respectively above datum ngth of 250 mm and flying altitude	:
	h ₂ = (D+ h ₁ = 115. R.L to th = 349.19 Two poi appear o of 2700	d) x tan $\alpha_2 = (2$ 09m the top of the top 00M ints A and B ha in the vertical p m above datum Point a b	52.13+100) x tar wer = R.L of B.N ving elevations of hotograph havin their correct p Photographic x (cm) +3.65 -2.25	$h = 18^{0}06^{\circ} = 112$ $h = 18^{0}06^{\circ} = 112^{0}06^{\circ} = 112^{0}06^{$	325.000 + 3.750+115.09 250 m respectively above datum ngth of 250 mm and flying altitude	:
	h ₂ = (D+ h ₁ = 115. R.L to th = 349.19 Two poi appear o of 2700	d) x tan $\alpha_2 = (2$ 09m the top of the top 00M ints A and B ha in the vertical p m above datum Point a b te the length of	52.13+100) x tar wer = R.L of B.N ving elevations c hotograph havin their correct p Photographic x (cm) +3.65	$h = 18^{0}06^{\circ} = 112$ $h = 18^{0}06^{\circ} = 112^{0}06^{\circ} = 112^{0}06^{$	325.000 + 3.750+115.09 250 m respectively above datum ngth of 250 mm and flying altitude	
(c)	h ₂ = (D+ h ₁ = 115. R.L to th = 349.19 Two poi appear o of 2700 Calcula Solution	d) x tan $\alpha_2 = (2$ 09m the top of the top 00M Ints A and B ha in the vertical p m above datum Point a b te the length of a:	52.13+100 x tar wer = R.L of B.N ving elevations of hotograph havin h. Their correct p Photographic x (cm) +3.65 -2.25 The ground line	$h = 18^{0}06' = 112$ $A + S_{2} + h_{2} = 12$ of 650 m and 2 g the focal ler hotographic c Co-ordinates y (cm) +2.54 +5.59 AB.	325.000 + 3.750+115.09 250 m respectively above datum ngth of 250 mm and flying altitude	
(c)	h ₂ = (D+ h ₁ = 115. R.L to th = 349.19 Two poi appear o of 2700 Calcula Solution	d) x tan $\alpha_2 = (2$ 09m the top of the top 00M Ints A and B ha in the vertical p m above datum Point a b te the length of a:	52.13+100) x tar wer = R.L of B.N ving elevations of hotograph havin their correct p Photographic x (cm) +3.65 -2.25	$h = 18^{0}06' = 112$ $A + S_{2} + h_{2} = 12$ of 650 m and 2 g the focal ler hotographic c Co-ordinates y (cm) +2.54 +5.59 AB.	325.000 + 3.750+115.09 250 m respectively above datum ngth of 250 mm and flying altitude	
(c)	$h_2 = (D+h_1 = 115, R.L to th = 349.19$ Two poi appear o of 2700 Calcula Solution $X_a = \frac{H-h}{f}$	d) x tan $\alpha_2 = (2$ 09m the top of the top 00M ints A and B ha in the vertical p m above datum Point a b te the length of a $\alpha_{x_a} = \frac{2700-650}{0.250}$	52.13+100 x tar wer = R.L of B.N ving elevations of hotograph havin h. Their correct p Photographic x (cm) +3.65 -2.25 The ground line (+3.65/100) = +	$h + 8^{\circ}06' = 112$ $h + S_2 + h_2 = 100$ of 650 m and 2 g the focal ler hotographic c Co-ordinates y (cm) +2.54 +5.59 AB. 299.3 m	325.000 + 3.750+115.09 250 m respectively above datum ngth of 250 mm and flying altitude	
(c)	$h_2 = (D+h_1 = 115.)$ R.L to th = 349.19 Two points appear or of 2700 Calcula Solutions $X_a = \frac{H-h}{f}$ $Y_a = \frac{H-h}{f}$	d) x tan $\alpha_2 = (2$ 09m the top of the top 00M ints A and B ha in the vertical p m above datum Point a b te the length of a $x_a = \frac{2700-650}{0.250}$ $a y_a = \frac{2700-650}{0.250}$	52.13+100) x tarwer = R.L of B.Nving elevations ofhotograph havintheir correct pPhotographicx (cm)+3.65-2.25The ground line(+3.65/100) = +(+2.54/100) = +	$h 18^{0}06' = 112$ $A + S_2 + h_2 = 100$ of 650 m and 2 g the focal ler hotographic c Co-ordinates y (cm) +2.54 +5.59 AB. 299.3 m 208.28 m	325.000 + 3.750+115.09 250 m respectively above datum ngth of 250 mm and flying altitude	
(c)	$h_2 = (D+h_1 = 115.)$ R.L to th = 349.19 Two points appear or of 2700 Calcula Solutions $X_a = \frac{H-h}{f}$ $Y_a = \frac{H-h}{f}$	d) x tan $\alpha_2 = (2$ 09m the top of the top 00M ints A and B ha in the vertical p m above datum Point a b te the length of a $x_a = \frac{2700-650}{0.250}$ $a y_a = \frac{2700-650}{0.250}$	52.13+100 x tar wer = R.L of B.N ving elevations of hotograph havin h. Their correct p Photographic x (cm) +3.65 -2.25 The ground line (+3.65/100) = +	$h 18^{0}06' = 112$ $A + S_2 + h_2 = 100$ of 650 m and 2 g the focal ler hotographic c Co-ordinates y (cm) +2.54 +5.59 AB. 299.3 m 208.28 m	325.000 + 3.750+115.09 250 m respectively above datum ngth of 250 mm and flying altitude	
(c)	$h_{2} = (D+h_{1} = 115)$ R.L to th = 349.19 Two points appear or of 2700 Calcula Solution $X_{a} = \frac{H-h}{f}$ $Y_{a} = \frac{H-h}{f}$	d) x tan $\alpha_2 = (2$ 09m the top of the top 09m nts A and B ha in the vertical p m above datum Point a b te the length of a $x_a = \frac{2700-650}{0.250}$ $a y_a = \frac{2700-650}{0.250}$ $b x_b = \frac{2700-250}{0.250}$	52.13+100) x tarwer = R.L of B.Nving elevations ofhotograph havintheir correct pPhotographicx (cm)+3.65-2.25The ground line(+3.65/100) = +(+2.54/100) = -2	$h 18^{0}06' = 112$ $A + S_2 + h_2 = 100$ of 650 m and 2 g the focal ler hotographic c Co-ordinates y (cm) +2.54 +5.59 AB. 299.3 m 208.28 m 20.5 m	325.000 + 3.750+115.09 250 m respectively above datum ngth of 250 mm and flying altitude	
(c)	$h_2 = (D+h_1 = 115, R.L to th = 349.19$ Two poi appear o of 2700 Calcula Solution $X_a = \frac{H-h}{f}$ $Y_a = \frac{H-h}{f}$ $X_b = \frac{H-h}{f}$	d) x tan $\alpha_2 = (2$ 09m the top of the top of the top of the top of the top of the top of the vertical p m above datum Point a b te the length of a $y_a = \frac{2700-650}{0.250}$ $y_a = \frac{2700-650}{0.250}$ $y_b = \frac{2700-250}{0.250}$ $y_b = \frac{2700-250}{0.250}$	52.13+100 x tar wer = R.L of B.N ving elevations of hotograph havin their correct p Photographic x (cm) +3.65 -2.25 The ground line (+3.65/100) = + (+2.54/100) = + (-2.25/100) = -2. (+5.59/100) = +	$h 18^{0}06' = 112$ $A + S_2 + h_2 = 100$ of 650 m and 2 g the focal ler hotographic c Co-ordinates y (cm) +2.54 +5.59 AB. 299.3 m 208.28 m 20.5 m 547.82 m	325.000 + 3.750+115.09 250 m respectively above datum ngth of 250 mm and flying altitude o-ordinates are as follows:	
(c)	$h_2 = (D+h_1 = 115, R.L to th = 349.19$ Two poi appear o of 2700 Calcula Solution $X_a = \frac{H-h}{f}$ $Y_a = \frac{H-h}{f}$ $X_b = \frac{H-h}{f}$	d) x tan $\alpha_2 = (2$ 09m the top of the top of the top of the top of the top of the top of the vertical p m above datum Point a b te the length of a $y_a = \frac{2700-650}{0.250}$ $y_a = \frac{2700-650}{0.250}$ $y_b = \frac{2700-250}{0.250}$ $y_b = \frac{2700-250}{0.250}$	52.13+100 x tar wer = R.L of B.N ving elevations of hotograph havin their correct p Photographic x (cm) +3.65 -2.25 The ground line (+3.65/100) = + (+2.54/100) = + (-2.25/100) = -2. (+5.59/100) = +	1 18°06' = 11: A + S ₂ + h ₂ = $\frac{1}{1000}$ f 650 m and 2 g the focal ler hotographic c Co-ordinates y (cm) +2.54 +5.59 AB. 299.3 m 208.28 m 20.5 m 547.82 m = √(270.019)	325.000 + 3.750+115.09 250 m respectively above datum ngth of 250 mm and flying altitude	
(c)	$h_2 = (D+h_1 = 115, R.L to th = 349.19$ Two points appear of of 2700 Calcular Solution: $X_a = \frac{H-h}{f}$ $Y_a = \frac{H-h}{f}$ $X_b = \frac{H-h}{f}$ $Y_b = \frac{H-h}{f}$ $X_b = \frac{H-h}{f}$	d) x tan $\alpha_2 = (2$ 09m the top of the top of the top of the top of the vertical p m above datum Point a b te the length of a $x_a = \frac{2700-650}{0.250}$ $\frac{a}{0.250}$ $\frac{a}{0.250}$ $\frac{a}{0.250}$ $\frac{2700-250}{0.250}$ $\sqrt{(X_a - X_b)^2}$	52.13+100) x tar wer = R.L of B.N ving elevations of hotograph havin their correct p Photographic x (cm) +3.65 -2.25 The ground line (+3.65/100) = + (+2.54/100) = + (-2.25/100) = -22 (+5.59/100) = + + (Y_a - Y_b)^2 = -22	$h = 18^{0}06' = 112$ $A + S_{2} + h_{2} = 1000$ $A + S_{2} + S_{2} = 1000$	325.000 + 3.750+115.09 250 m respectively above datum ngth of 250 mm and flying altitude o-ordinates are as follows:	

$ \begin{array}{c} \label{eq: constraints} \\ eq:$

C

Course Incharge

(1

Malle

HOD CIVIL Professor & Head Dept. of Civil Engineering K.S. Group of Institutions K.S. School of Engineering S. Munagement Batgaloucipul, p. 2

IQAC- Coordinator

18, Gara

Principal

Dr. K. RAMA NARASIMHA Principal/Director K S School of Engineering and Management Disputations 5